Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nature ; 601(7892): 201-204, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022591

RESUMO

The final fate of massive stars, and the nature of the compact remnants they leave behind (black holes and neutron stars), are open questions in astrophysics. Many massive stars are stripped of their outer hydrogen envelopes as they evolve. Such Wolf-Rayet stars1 emit strong and rapidly expanding winds with speeds greater than 1,000 kilometres per second. A fraction of this population is also helium-depleted, with spectra dominated by highly ionized emission lines of carbon and oxygen (types WC/WO). Evidence indicates that the most commonly observed supernova explosions that lack hydrogen and helium (types Ib/Ic) cannot result from massive WC/WO stars2,3, leading some to suggest that most such stars collapse directly into black holes without a visible supernova explosion4. Here we report observations of SN 2019hgp, beginning about a day after the explosion. Its short rise time and rapid decline place it among an emerging population of rapidly evolving transients5-8. Spectroscopy reveals a rich set of emission lines indicating that the explosion occurred within a nebula composed of carbon, oxygen and neon. Narrow absorption features show that this material is expanding at high velocities (greater than 1,500 kilometres per second), requiring a compact progenitor. Our observations are consistent with an explosion of a massive WC/WO star, and suggest that massive Wolf-Rayet stars may be the progenitors of some rapidly evolving transients.

2.
Nature ; 474(7352): 487-9, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21654747

RESUMO

Supernovae are stellar explosions driven by gravitational or thermonuclear energy that is observed as electromagnetic radiation emitted over weeks or more. In all known supernovae, this radiation comes from internal energy deposited in the outflowing ejecta by one or more of the following processes: radioactive decay of freshly synthesized elements (typically (56)Ni), the explosion shock in the envelope of a supergiant star, and interaction between the debris and slowly moving, hydrogen-rich circumstellar material. Here we report observations of a class of luminous supernovae whose properties cannot be explained by any of these processes. The class includes four new supernovae that we have discovered and two previously unexplained events (SN 2005ap and SCP 06F6) that we can now identify as members of the same class. These supernovae are all about ten times brighter than most type Ia supernova, do not show any trace of hydrogen, emit significant ultraviolet flux for extended periods of time and have late-time decay rates that are inconsistent with radioactivity. Our data require that the observed radiation be emitted by hydrogen-free material distributed over a large radius (∼10(15) centimetres) and expanding at high speeds (>10(4) kilometres per second). These long-lived, ultraviolet-luminous events can be observed out to redshifts z > 4.

3.
Science ; 310(5746): 265-9, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16150977

RESUMO

On 4 July 2005, many observatories around the world and in space observed the collision of Deep Impact with comet 9P/Tempel 1 or its aftermath. This was an unprecedented coordinated observational campaign. These data show that (i) there was new material after impact that was compositionally different from that seen before impact; (ii) the ratio of dust mass to gas mass in the ejecta was much larger than before impact; (iii) the new activity did not last more than a few days, and by 9 July the comet's behavior was indistinguishable from its pre-impact behavior; and (iv) there were interesting transient phenomena that may be correlated with cratering physics.


Assuntos
Meteoroides , Poeira Cósmica , Júpiter , Compostos Orgânicos , Fotometria
4.
Appl Opt ; 31(28): 6036-46, 1992 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20733806

RESUMO

A near-infrared adaptive optics system operating at approximately 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of >0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...